輸入端的兩個電容Cin和Cbypass。輸入端電容的作用是抑制輸入電壓的波動。輸入電壓的波動主要來自電源開關時的脈沖輸入電流,Bulk電源的輸出電流較平整(LC串聯電路);Boost電源的情況正好相反,輸入電容電流平整,脈沖電流進入輸出電容。原文還提及了Buck-Boost或“flyback”(回掃),Cuk(據說這種是理想的DC-DC轉換器,不存在所謂AC電流路徑,輸入輸出全是平整電流,沒玩過L)等電源,其輸入輸出電容上的電流狀況取決于各自的拓撲結構。在開關電源導通的瞬間,大部分脈沖電流來自Cbypass,其余部分主要來自Cin,只有那些緩慢變化的電流才來自DC輸入電源。因此輸入電容實際為芯片提供了脈沖電流源,如果輸入電容的ESR和ESL太高會造成不必要的高頻輸入電壓紋波,我們看到這句話千萬不可理解為要無限加大輸入電容,由開關頻率(100K-260K)產生的自然輸入電壓紋波不在考慮范圍,俺們考慮的是在轉換瞬間頻率為10MHz-30MHz噪聲,特別的對于高速開關電源,將一個0.1uF-0.47uF的貼片電容Cbypass盡可能靠近芯片,Bulk電容Cin個頭大,可以距離稍遠(一英寸);(這里的高速和開關的頻率并無多大關系,而是指開關的轉換時間,FET速度快于Bipolar,而開關按結構可分為微動開關,船型開關,鈕子開關,撥動開關,按鈕開關,按鍵開關等,更多開關類的介紹請點
可以對開關電源元器件的額定參數進行十分準確的計算,這樣通過準確參數進行選擇。工作在脈沖電路中的元器件欲通過實測電壓、電流參數選擇其性能是不可能的。至于理論計算,也只能達到近似估計的程度,具體參數選擇是在計算結果的基礎上寬打窄用,最明顯的例子是:單端開關電路,從理論上計算,其開關管反壓應為輸入電壓最大值的兩倍。因為電感線圈的感應電勢不僅與電流變化成正比的函數,而且與產生電流變化的時間成反比。另外,電感線圈的工藝上幾乎難以人為控制的分布參數,也使感應電勢大幅度超出計算值,因此,在脈沖狀態下,不論無源元件還是有源器件,其性能選擇不同于普通模擬電路,所以需要選擇高性能的元件保證整個電子設備的正常工作,這也是通過測試選擇開關電源元件的重要方法。
根據技術規范計算電路參數,再根據電路參數選擇電路元器件。整個電路設計主要是正確選擇元器件。而元器件有各自的屬性:電壓、電流、功率以及時間參數。。也就是說,工作在脈沖電路中的元器件欲通過實測電壓、電流參數選擇其性能是不可能的。至于理論計算,也只能達到近似估計的程度,具體參數選擇是在計算結果的基礎上寬打窄用。最明顯的例子是:單端開關電路,從理論上計算,其開關管反壓應為輸入電壓最大值的兩倍。而實際應用中,加在開關管集電極的脈沖波形受儲能電感的集總參數、分布參數和電源負載性質的影響,開關管承受反壓值將超出理論計算值范圍。因為電感線圈的感應電勢不僅與電流變化成正比的函數,而且與產生電流變化的時間成反比。另外,電感線圈的工藝上幾乎難以人為控制的分布參數,也使感應電勢大幅度超出計算值。因此,在脈沖狀態下,不論無源元件還是有源器件,其性能選擇不同于普通模擬電路。