咪頭
咪頭,是將聲音信號轉換為電信號的能量轉換器件,是和喇叭正好相反的一個器件(電→聲)。是聲音設備的兩個終端,咪頭是輸入,喇叭是輸出。又名麥克風,話筒,傳聲器,咪膽等。
咪頭的分類:
1、從工作原理上分:
炭精粒式
電磁式
電容式
駐極體電容式(以下介紹以駐極體式為主)
壓電晶體式,壓電陶瓷式
二氧化硅式等
2、從尺寸大小分,駐極體式又可分為若干種.
Φ9.7系列產品 Φ8系列產品 Φ6系列產品
Φ4.5系列產品 Φ4系列產品 Φ3系列產品
每個系列中又有不同的高度
3、從咪頭的方向性,可分為全向,單向,雙向(又稱為消噪式)
4、從極化方式上分,振膜式,背極式,前極式
從結構上分又可以分為柵極點焊式,柵極壓接式,極環連接式等
5、從對外連接方式分
普通焊點式:L型
帶PIN腳式:P型
同心圓式: S型
三、駐極體傳聲器的結構
以全向MIC,振膜式極環連接式為例
1、防塵網:
保護咪頭,防止灰塵落到振膜上,防止外部物體刺破振膜,還有短時間的防水作用。
2、外殼:
整個咪頭的支撐件,其它件封裝在外殼之中,是傳聲器的接地點,還可以起到電磁屏蔽的作用。
3、振膜:是一個聲-電轉換的主要零件,是一個繃緊的特氟窿塑料薄膜粘在一個金屬薄圓環上,薄膜與金屬環接觸的一面鍍有一層很薄的金屬層,薄膜可以充有電荷,也是組成一個可變電容的一個電極板,而且是可以振動的極板。
4、墊片:
支撐電容兩極板之間的距離,留有間隙,為振膜振動提供一個空間,從而改變電容量。
5、背極板:
電容的另一個電極,并且連接到了FET(場效應管)的G(柵)極上。
6、銅環:
連接極板與FET(場效應管)的G(柵)極,并且起到支撐作用。
7、腔體:
固定極板和極環,從而防止極板和極環對外殼短路(FET(場效應管)的S(源極),G(柵)極短路)。
8、PCB組件:
裝有FET,電容等器件,同時也起到固定其它件的作用。
9、PIN:有的傳聲器在PCB上帶有PIN(腳),可以通過PIN與其他PCB焊接在一起,起連接另外前極式,背極式在結構上也略有不同。
四、咪頭的電原理圖:
FET(場效應管)MIC的主要器件,起到阻抗變換或放大的作用,
C;是一個可以通過膜片震動而改變電容量的電容,聲電轉換的主要部件。
C1,C2是為了防止射頻干擾而設置的,可以分別對兩個射頻頻段的干擾起到抑制作用。
RL:負載電阻,它的大小決定靈敏度的高低。
VS:工作電壓,MIC提供工作電壓
:CO:隔直電容,信號輸出端.
五、駐極體咪頭的工作原理:
由靜電學可知,對于平行板電容器,有如下的關系式:C=ε.S/L ……①即電容的容量與介質的介電常數成正比,與兩個極板的面積成正比,與兩個極板之間的距離成反比。
另外,當一個電容器充有Q量的電荷,那么電容器兩個極板要形成一定的電壓,有如下關系式:C=Q/V ……②
對于一個駐極體咪頭,內部存在一個由振膜,墊片和極板組成的電容器,因為膜片上充有電荷,并且是一個塑料膜,因此當膜片受到聲壓強的作用,膜片要產生振動,從而改變了膜片與極板之間的距離,從而改變了電容器兩個極板之間的距離,產生了一個Δd的變化,因此由公式①可知,必然要產生一個ΔC的變化,由公式②又知,由于ΔC的變化,充電電荷又是固定不變的,因此必然產生一個ΔV的變化。
這樣初步完成了一個由聲信號到電信號的轉換。
由于這個信號非常微弱,內阻非常高,不能直接使用,因此還要進行阻抗變換和放大。
FET場效應管是一個電壓控制元件,漏極的輸出電流受源極與柵極電壓的控制。
由于電容器的兩個極是接到FET的S極和G極的,因此相當于FET的S極與G極之間加了一個Δv的變化量,FET的漏極電流I就產生一個ΔID的變化量,因此這個電流的變化量就在電阻RL上產生一個ΔVD的變化量,這個電壓的變化量就可以通過電容C0輸出,這個電壓的變化量是由聲壓引起的,因此整個咪頭就完成了一個聲電的轉換過程。
六、咪頭的主要技術指標:
咪頭的測試條件;MIC的使用應規定其工作電壓和負載電阻,不同的使用條件,其靈敏度的大小有很大的影響
電壓 電阻
1、消耗電流:即咪頭的工作電流
主要是FET在VSG=0時的電流,根據FET的分檔,可以做成不同工作電流的傳聲器。但是對于工作電壓低、負載電阻大的情況下,對于工作電流就有嚴格的要求,由電原理圖可知
VS=VSD+ID×RL ID = (VS- VSD)/ RL
式中 ID FET 在VSG等于零時的電流
RL為負載電阻
VSD,即FET的S與D之間的電壓降
VS為標準工作電壓
總的要求 100μA〈IDS〈500μA
2、靈敏度:單位聲壓強下所能產生電壓大小的能力。
單位:V/Pa 或 dBV/Pa 有的公司使用是dBV/μBar
-40 dBV/Pa=-60dBV/μBar
0 dBV/Pa=1V/Pa
聲壓強Pa=1N/m2
3、輸出阻抗:基本相當于負載電阻RL(1-70%)之間。
4、方向性及頻響特性曲線:
a、全向: MIC的靈敏度是在相同的距離下在任何方向上相等,全向MIC的結構是PCB上全部密封,因此,聲壓只有從MIC的音孔進入,因此是屬于壓強型傳聲器。
頻率特性圖:
b、單向 單向MIC 具有方向性,如果MIC的音孔正對聲源時為0度,那么在0度時靈敏度最高,180度時靈敏度最低,在全方位上呈心型圖,單向MIC的結構與全向MIC不同,它是在PCB上開有一些孔,聲音可以從音孔和PCB的開孔進入,而且MIC的內部還裝有吸音材料,因此是介于壓強和壓差之間的MIC。
頻率特性圖:
c、消噪型:是屬于壓差式MIC,它與單向MIC不同之處在于內部沒有吸音材料,它的方向型圖是一個8字型
頻率特性:
5、頻率范圍:
全向: 50~12000Hz 20~16000Hz
單向:100~12000Hz 100~16000Hz
消噪:100~10000Hz
6、最大聲壓級:是指MIC的失真在3%時的聲壓級,聲壓級定義:20μpa=0dBSPL
MaxSPL為115dBSPLA SPL聲壓級 A為A計權
7、S/N信噪比:即MIC的靈敏度與在相同條件下傳聲器本身的噪聲之比,詳見產品手冊,噪聲主要是FET本身的噪聲 .
錄音器的咪頭正負極接反了不能用,錄音器的咪頭的負極是和屏蔽線連接,會造成無聲音。
咪頭電容的工作原理是聲波作用在振膜上引起振動,從而改變兩極板間電容量的變化,引起極板上電荷量的改變,電荷量隨時間變化形成高變電流,流經電阻上在兩端產生壓降,在經過放大器輸出高變信號。由于輸出阻抗很高,不能直接輸出,因此在傳聲器殼內裝入一個前置放大器進行阻抗變換。將高阻改變成低阻輸出。電容式傳聲器其實需要二組電源,一組為預放大器電源(約1.5V~3V)另一組是電容極頭的極化電壓(約48~52V)。
受強外電場作用后其極化現象不隨外電場去除而完全消失,出現極化電荷“永久”存在于電介質表面和體內的現象。這種在強外電場等因素作用下,極化并能“永久”保持極化狀態的電介質,稱為駐極體 聲電轉換的關鍵元件是駐極體振動膜。它是一片極薄的塑料膜片,在其中一面蒸發上一層純金薄膜。然后再經過高壓電場駐極后,兩面分別駐有異性電荷。膜片的蒸金面向外,與金屬外殼相連通。膜片的另一面與金屬極板之間用薄的絕緣襯圈隔離開。這樣,蒸金膜與金屬極板之間就形成一個電容。極體膜片遇到聲波振動時,引起電容兩端的電場發生變化,從而產生了隨聲波變化而變化的交變電壓。駐極體膜片與金屬極板之間的電容量比較小,一般為幾十pF。因而它的輸出阻抗值很高(Xc=1/2~tfc),約幾十兆歐以上。這樣高的阻抗是不能直接與音頻放大器相匹配的。所以在話筒內接入一只結型場效應晶體三極管來進行阻抗變換。場效應管的特點是輸入阻抗極高、噪聲系數低。普通場效應管有源極(S)、柵極(G)和漏極(D)三個極。這里使用的是在內部源極和柵極間再復合一只二極管的專用場效應管。接二極管的目的是在場效應管受強信號沖擊時起保護作用。場效應管的柵極接金屬極板。