晶體二極管為一個由p型半導體和n型半導體形成的p-n結,在其界面處兩側形成空間電荷層,并建有自建電場。當不存在外加電壓時,由于p-n結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處于電平衡狀態。 當外界有正向電壓偏置時,外界電場和自建電場的互相抑消作用使載流子的擴散電流增加引起了正向電流。當外界有反向電壓偏置時,外界電場和自建電場進一步加強,形成在一定反向電壓范圍內與反向偏置電壓值無關的反向飽和電流I0。
二極管為一個由p型半導體和n型半導體形成的pn結,在其界面處兩側形成空間電荷層,并建有自建電場。當不存在外加電壓時,由于pn結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處于電平衡狀態。當外界有正向電壓偏置時,外界電場和自建電場的互相抑消作用使載流子的擴散電流增加引起了正向電流。當外界有反向電壓偏置時,外界電場和自建電場進一步加強,形成在一定反向電壓范圍內與反向偏置電壓值無關的反向飽和電流I0。當外加的反向電壓高到一定程度時,pn結空間電荷層中的電場強度達到臨界值產生載流子的倍增過程,產生大量電子空穴對,產生了數值很大的反向擊穿電流,稱為二極管的擊穿現象。pn結的反向擊穿有齊納擊穿和雪崩擊穿之分。
二極管種類有很多,按照所用的半導體材料,可分為鍺二極管(Ge管)和硅二極管(Si管)。根據其不同用途,可分為檢波二極管、整流二極管、穩壓二極管、開關二極管、隔離二極管、肖特基二極管、發光二極管、硅功率開關二極管、旋轉二極管等。按照管芯結構,又可分為點接觸型二極管、面接觸型二極管及平面型二極管。
二極管原理是由半導體組成的器件。晶體二極管是一個由p型半導體和n型半導體形成的p-n結,在其界面處兩側形成了空間電荷層,并且建有自建電場,當不存在外加電壓時,因為p-n結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處于電平衡狀態。
晶體二極管為一個由p型半導體和n型半導體形成的pn結,在其界面處兩側形成空間電荷層,并建有自建電場。當不存在外加電壓時,由于pn結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處于電平衡狀態。當外界有正向電壓偏置時,外界電場和自建電場的互相抑消作用使載流子的擴散電流增加引起了正向電流。當外界有反向電壓偏置時,外界電場和自建電場進一步加強,形成在一定反向電壓范圍內與反向偏置電壓值無關的反向飽和電流I0。當外加的反向電壓高到一定程度時,pn結空間電荷層中的電場強度達到臨界值產生載流子的倍增過程,產生大量電子空穴對,產生了數值很大的反向擊穿電流,稱為二極管的擊穿現象。pn結的反向擊穿有齊納擊穿和雪崩擊穿之分。
二極管為一個由p型半導體和n型半導體形成的p-n結:當外界有正向電壓偏置時,外界電場和自建電場的互相抑消作用使載流子的擴散電流增加引起了正向電流。當外界有反向電壓偏置時,外界電場和自建電場進一步加強,形成在一定反向電壓范圍內與反向偏置電壓值無關的反向飽和電流I0。
在電子電路中,將二極管的正極接在高電位端,負極接在低電位端,二極管就會導通,這種連接方式,稱為正向偏置。必須說明,當加在二極管兩端的正向電壓很小時,二極管仍然不能導通,流過二極管的正向電流十分微弱。只有當正向電壓達到某一數值(這一數值稱為“門檻電壓”,鍺管約為0.2V,硅管約為0.6V)以后,二極管才能直正導通。導通后二極管兩端的電壓基本上保持不變(鍺管約為0.3V,硅管約為0.7V),稱為二極管的“正向壓降”。